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Generalized Negative Binomial Distributions
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We show that a wide variety of processes lead, in certain limit, to a simple
generalization of the negative binomial distribution. Its properties are studied in
detail and used to derive an important result in the theory of avalanches.
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1. INTRODUCTION

In this work we shall consider distributions of points generated by certain
type of processes which are relevant to a variety of physically interesting
situations.

The quantity we shall be interested in is the probability, Pn(V ), that
a volume, V, placed at random in the resulting distribution contains n
points. Using some techniques we manage to obtain this quantity in terms
of the properties of the processes generating the distribution and find that
in an appropriate limit Pn(V ) reduces to the negative binomial distribution
(NBD). This distribution have been found (Carruther and Shih, 1983;
Carruther and Minh, 1983) to be a good approximation to the distribution
of Zwicky clusters and it also arises in the statistics of hadron multiplicities
in high-energy particle collisions. So, it is interesting to see that this dis-
tribution appears as a limit case of distributions generated by rather com-
mon processes. We shall also be able to determine that those distributions
of points whose Pn(V ) is a NBD, are made up of randomly distributed
clusters and determine their multiplicity function.

We shall find that the cluster multiplicity function may be expressed as
a superposition of avalanches of a certain type starting at different times
and use this fact to obtain the corresponding avalanche size distribution.
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We shall first deal with the case of linear avalanches, corresponding to the
NBD, and then extend the procedure to more general cases.

Now, before giving the precise mathematical characterization of the
processes that we shall consider, we discuss an example: seeds of some
plant driven by the wind have an uniform probability for ending up at any
position within a certain area. When a seed falls at some place it originates
a plant that, in turn, will produce new seeds. So the probability per unit of
time for a new seed to fall in the neighbourhood of a previously fallen one
is greatly enhanced with respect to that for a randomly chosen point, where
only seeds carried by the wind (having originated from plants outside the
area in question) can fall. In general the processes under consideration
include situations where points have an uniform probability for appearing
at any position far from previously placed points, but each point becomes
also a generator of new points enhancing this probability in their neigh-
bourhood.

To give the precise definition of the processes to be studied, we assume
that the points are distributed in three dimensional space, although the
dimensionality of the underlying space is irrelevant to most of our consider-
ations. Take a region of space with volume 0 devoid of points and where
the probability per unit of time and volume for a point to appear is certain
constant L, so that the first point is equally likely to appear at any position
within 0. The probability per unit of time and volume for a second point
to appear at position x� is L(1+w(r)) where w(r) is some function of the
distance, r, from the first point to x� . In general, the probability per unit of
time and volume for the i th point to appear at position x� is:

L \1+ :
i&1

j=1

w( |x� &x� j | )+ (1)

where x� j is the position of the j th point. The physical content of expression
(1) is that the enhancements of the probability density due to the presence
of various points add linearly.

Notice that although for convenience we have considered L to be a
constant in time, we could have chosen for it any function of time. In fact,
it is clear that the properties of the distribution at a time when there are
N points within 0 do not depend on how fast the distribution have been
created, but on the probabilities for the i th point to be placed at different
positions within 0.

2. DERIVATION OF Pn(V )

The function w(r) completely defines the processes under consideration.
So we could in principle obtain the correlation functions corresponding to
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the resulting distribution and express Pn(V ) by their means (White, 1979).
This would be, however, a very inconvenient approach, since there is not
a straightforward procedure for obtaining the correlation functions from
w(r). The advantage of the present approach lies on the fact that Pn(V )
may be obtained directly in terms of w(r), bypassing the computation of
the correlation functions. This approach is interesting in itself, since it may
be useful to deal with distributions generated by processes others than
those considered here.

It is important to realize that although the two point (and higher
order) correlation function may be obtained from w(r), no simple iden-
tification between these two functions is posible, since their meanings are
substantialy different. The two point correlation function, !(r), gives the
fractional enhancement of the probability density for finding a point at a
distance r from a point chosen at random in the resulting distribution, that
is, at the time when there are N points within 0. The definition of !(r) does
not take into account the order in which the point have been placed, so it
does not distinguish between cause and effect. This distinction is taken into
account, however, in the definition of w(r), since it represents the fractional
enhancement of the probability density at a position at a distance r from
a previously placed point due to the presence of this point, which is the
cause of that enhancement. At the stage when the j th point is about to be
placed, we only need to count the enhancements due to the j&1 previously
placed points, since in any actual physical process, the probability density
for the j th point can not depend on the position of points still to be placed.

To obtain Pn(V ), we shall first obtain P0(V ) and use the following
relationship (Otto et al. 1986)

Pn(V )=
(&n� )n

n!
d n

dn� n P0(V ) (2)

where n� is the mean density of points and where the derivatives with
respect to n� are carried out holding the correlations fixed. This is the same
as deriving with respect to n� holding w(r) fixed, since the correlations func-
tions depends only on w(r). It is this last fact that imply the validity of
expression (2) in the present problem.

We shall first obtain Pn(V ) in the cases when:

}w&
1
V |

V
|

V
w( |x� 1&x� 2| ) dx� 1 dx� 2 }<<w

(3)

w#4? |
�

0
w(r) r2 dr
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That is, in the cases where w(r) converges on scales much smaller
than V. The result that we shall obtain is strictly valid in the limit in which
this scale goes to zero.

Expression (1) implies that the probability density, {(x� , i) for the i th
point to be placed at x� is given by

{(x� , i)=
1+� i&1

j=1 w( |x� &x� j | )

�0 (1+� i&1
j=1 w( |x� &x� j | )) dx�

(4)

Using the definition in (3), we have

|
0 \1+ :

i&1

j=1

w( |x� &x� j | )+ dx� =0+(i&1) w

By means of {(x� , i), we may obtain the probability, P0(V ), of not
finding any point within a randomly placed volume V when there are N
points within 0 (0>>V).

P0(V )=6 N
i=1 \1&|

V
{(x� , i) dx� + (5)

where the i th factor is the probability for the i th point to be placed out-
side V. When the i th point is placed in the distribution there are, ex
hypothesis, no points within V, so the integral over V of the terms of the
form w( |x� &x� j | ) in (4) must be equal to zero in the limit in which w(r)
goes to a delta distribution. We then have:

|
V

{(x� , i) dx� =
V

0+(i&1) w
(6)

P0(V )=6 N
i=1 \1&

V
0+(i&1) w+

In the large 0, N limit, which is the interesting case we have:

P0(V )=exp _&|
n�

0

V dx
1+xw&=(1+wn� )&V�w

(7)

n� = lim
0 � �

N
0
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Using expression (2)

Pn(V )=
(&n� )n

n!
d n

dn� n (1+wn� )&V�w=
1 (V�w+n)

1 (V�w)
1
n!

(n� w)n

(1+wn� )V�w+n

=
(n� )n

n!
[6 n&1

i=0 (V+|i)](1+wn� )&(V�w+n) (8)

where the derivatives are carried out holding w fixed. 1 stands for the
gamma function. This is formally equal to the expression for the NBD, but
here the parameter V�w is not restricted to take integer values.

Using expression (2), it is easy to show that the generating function,
G[Pn(V )](t), of Pn(V ) is related to P0(V, n� ) by:

G[Pn(V )](t)= :
�

n=0

Pn(V ) ent=P0(V, (1&et) n� ) (9)

So, in the present case we have

G[Pn(V )](t)=(1+n� w(1&et))&V�w (10)

We then have for the first two moments of Pn(V )

(n) =n� V ; ( (n&(n) )2) =n� V(1+n� w) (11)

So we find the following relationship between w and the two point
correlation function, !

w=
1
V |

V
|

V
!( |x� 1&x� 2 | ) dx� 1 dx� 2 (12)

To obtain P0(V ) we have used the first expression in (6). This expres-
sion holds in the limit of arbitrarily small scale of convergence of w(r). In
this limit the enhancement of the probability density within V due to points
outside it becomes negligible. We shall now consider a situation where the
scale of w(r) is finite so that expression (6) is no longer valid. To compute
the enhancement of the probability density within V due to points outside
it, we assume that these points are randomly distributed. Then expression
(6) takes the form:

P0(V )=6 N
i=1 \1&

V+(i&1) 2
0+(i&1) w+ ;

(13)

2=
1
0 |

0
|

0
w( |x� 1&x� 2 | ) C(x� 2)(1&C(x� 1)) dx� 1 dx� 2

921Generalized Negative Binomial Distributions



where C(x� ) is a function that is equal to one for points within V and equal
to zero otherwise. Taking, as before, N, 0 to infinity, we find

P0(V )=e&qn� �w(1+wn� )&V�w+q�w2

(14)

q#02

Since the correlations remain fixed when w(r) is held fixed, we may
obtain Pn(r) by deriving this expression with respect to n� holding p, q, V
fixed as indicated in (2).

Expression (14) is only an approximation, since in obtaining the mean
value of the enhancement of the probability within V due to outside points
we have neglected the correlations. This leads, however, to a small error.

3. STRUCTURE OF THE DISTRIBUTION ASSOCIATED WITH
THE NBD

We shall now discuss the spatial structures of those distributions of
points whose Pn(V ) is a generalized NBD.

To obtain expression (8) we have assumed that w(r) is a delta dis-
tribution. This implies that when a new point is placed in the distribution
there is some probability that it falls on top of a previously placed point
and that the probability density for it to be placed at any position where
there are not points is uniform. Hence, the resulting distribution is made up
of randomly distributed point-like clusters characterized by certain multi-
plicity function, P(N ).

We shall now describe the general procedure whereby it may be
stablished whether a given Pn(r) corresponds to a distribution of points
containing point-like clusters and shall determine their multiplicity func-
tion. To this end we use the fact that in the small V limit, Pn(V ) is
approximately proportional to the probability for a cluster to contain n
points. This is so because the probability for V to contain more than one
cluster becomes negligible in this limit. More precisely, we may write

lim
V � 0

(n� V�(N ) ) P(N=n)
Pn(V )

=1 (15)
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where (N ) is the mean number of points in a cluster, so that n� �(N ) is the
mean density of clusters and the parentheses in the numerator is the prob-
ability for the volume V to contain one cluster. We may then write:

P(N=n)=(N ) lim
V � 0

Pn(V )
n� V

#(N ) F(n)

(16)

P(N )=
F(n=N )

��
n=1 F(n)

If, unlike in the present case, the correlation functions of the point dis-
tribution corresponding to Pn(V ) were regular, so that the probability of
having two or more points of the distribution at the same spatial point
(position) was zero, it could not contain point-like clusters, and P(N ) must
be equal to zero for N larger than one.

Using expression (8) in (16) we find in the present case:

F(n)=
1

n� w
1
n

An; A#
n� w

1+n� w
(17)

P(N )=(&ln(1&A))&1 1
N

AN

If a distribution of points is made up of randomly placed point-like
clusters, the generating function, G[Pn(V )](t), of the corresponding Pn(V )
and the generating function, G[P(N )](t), of the cluster multiplicity func-
tion are related by:

G[P(N )](t)=1+
(N )
n� V

ln[G[Pn(V )](t)] (18)

This expression may inmedeately be obtained by writting the generat-
ing function of Pn(V ) as the sum over all posible cases of the product of
the Poissonian probability for volume V to contain j cluster times the
generating function of Pn(V ) when this condition holds, which is equal to
the j th power of the cluster generating function

G[Pn(V )]=e&n� V�(N ) :
�

j=0

(n� V�(N ) ) j

j !
[G[P(N )](t)] j (19)

Thus, the necessary and suffcient condition for the clusters to be
uncorrelated (randomly placed) is that the logarithm of the generating
function of Pn(V ) be proportional to V, so that P(N ) be independent of V.
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In our problem it is easy to check that this relationship is satisfied, since
expession (17) gives:

G[P(N )](t)=
ln(1&Aet)
ln(1&A)

(20)

and the generating function of Pn(V ) is given by (10).
It is interesting to note that, in principle, different point distributions

may exist such that their corresponding Pn(V ) is a NBD. That is, we may
generate distributions made up of correlated point-like clusters leading to
this Pn(V ). Take the case of clusters with an exponential multiplicity func-
tion placed accordingly to a regular grid so that a certain volume V always
contain the same number of clusters. It is clear that the corresponding
Pn(V ) is a NBD, but this is so only for a particular volume (and shape).
This is also true for any other distribution with or without point-like
clusters. It is only for the distribution that we have described that Pn(V )
is a NBD for any volume.

In the process of generating the point distribution, new clusters are
created whenever a new point is placed at a position where there are not
other points. These points we term father points since they determine where
a cluster will form. Once a father point is placed, the growth of the cluster
is a typical avalanche process in which the probability per unit of time for
a new point to appear is at any time given by the product of certain func-
tion of time by the number of points already present at that time.

If we knew the probability distribution for the sizes of these
avalanches, we could express P(N ) (see (17)) as a combinations of dis-
tributions corresponding to avalanches starting at different times. This is so
because P(N ) is the distribution corresponding to all clusters present at
some given time, whose father points have been placed at different times.
Here we shall solve the opposite problem, we shall use the expression that
we have obtained for P(N ) to obtain the probability distribution for the
sizes of avalanches starting at some given time. To this end we must first
obtain the distribution in time of the father points. Instead of time itself, we
shall use as a time variable the value of the mean density, n� (t), which takes
the value zero at the initial time and the value n� at the final time when all
points have been placed in the distribution.

From expression (4) it is clear that the probability for the point placed
at time n� (t) to fall outside any existing cluster, that is, the probability that
it is a father point, is given by:

1
1+wn� (t)

(21)
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so, the probability, P(n� (t)) dn� (t), that a randomly chosen father point have
been placed between n� (t) and n� (t)+dn� (t) is

P(n� (t)) dn� (t)=\|
n�

0

dn� (t)
1+n� (t) w +

&1 dn� (t)
1+n� (t) w

=
w

ln(1+wn� )
dn� (t)

1+n� (t) w
(22)

We may then write for P(N )

P(N )=|
n�

0
P(n� (t)) P(N�n� (t)) dn� (t)=

1
ln(1+wn� )

1
N \ n� w

1+n� w +
N

(23)

where P(N�n� (t)) is the probability distribution for the sizes at time n� of
clusters whose father points have been placed at time n� (t). The quantities
n� , n� (t) may enter P(N�n� (t)) only through the variable:

u#|
n�

n� (t)

dx
1+wx

=
1
w

ln
1+n� w

1+n� (t) w

which reflects the fact that the size, at time n� , of a cluster initiated at time
n� (t) depends on the number of points still to be placed in the distribution
and that the probability for a point to be placed in a cluster initiated at
n� (t) is reduced by the factor (1+wn� (t))&1 with respect to the correspond-
ing probability for the first cluster, initiated at n� (t)=0. This fact, together
with expression (23) completely determine P(N�n� (t)):

P(N�n� (t))=e&wu(1&e&wu )N&1=
1+n� (t) w

1+n� w \(n� &n� (t)) w
1+n� w +

N&1

(24)

So, for the cluster initiated at n� (t)=0, we have:

P(N�0)=
1

1+n� w \ n� w
1+n� w+

N&1

(25)

We may then conclude that the avalanche process corresponding to
the growth of these clusters leads to an exponential distribution. The same
conclusion applies for any avalanche process in which the probability per
unit time, Z, for a new point to joint the avalanche may be written in the
form:

Z(t)=L(t) n(t) (26)
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where L(t) is some function of time and n(t) is the number of points in the
avalanche at time t. In this case the size of the avalanche at time t is given
by expression (25) with n� w given by:

n� w=exp _|
t

0
L(t) dt &&1 (27)

When L(t) is a constant, the expected value of the size of the
avalanche growes exponentialy with time.

We will now describe the generalization of this procedure to non-
linear avalanches, where the probability per unit time for a new point to
join the avalanche, Z(t), may be expressed in the form:

Z(t)=L(t) f (n(t))

f being a non-linear function of n(t).
To this end, we consider processes whereby points are sequentialy

placed within a given volume and where the enhancement of the probabil-
ity density due to the previously placed points add up non-linearly, unlike
in the case leading to expression (7). More precisely, the probability den-
sity for the placement of the i th point at position x� is proportional to:

\1+ g \ :
i&1

j=1

W( |x� &x� j |++ (28)

where g(u) is some non-linear function of its argument and w(r) is defined
as in expression (1).

In the limit in which w(r) goes to a delta distribution, which is the one
relevant to the theory of avalanches, the distribution of points resulting
from the above process is made up of randomly placed point-like clusters.
However, even in this limit, for a non-linear g(u), the processes described
by (28) are not clearly related to the avalanche processes. The reason being
that when a point is placed within the probability enhancement range of a
previously placed one, their regions of probability enhancement do not
exactly overlap. This implies that a proper treatment of processes (28) must
involve complicated geometrical coefficients bearing no relationship with
the avalanches under consideration. To avoid this problem we shall con-
sider a slightly different kind of processes whereby after depositing a point
according to (28), when it happens to fall within the range of a previously
placed one, the former is moved to the position of the latter so that both
ranges exactly overlap.
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Note that in the relevant zero range limit there is no difference
between (28) and the newly defined processes in regard to the position of
the points. But the difference between the resulting multiplicity function
persist in this limit, leading obviously to higher values (if |(r)>0) in the
last case, which is the one that makes posible an exact treatment of the
avalanches. So, these are the processes considered in what follows.

When w(r) is a $ distribution, only points within the same cluster
(at x� ) contribute to the sum in (28), and it is easy to realize that instead
of expression (6) we should have for the probability that the i th point
is placed within volume V

V
0+(i&1)( g� ((i&1)�0))

(29)

g� (n� i )#
1

(N )
:
�

N=1

g(|N ) P(N, n� i ); n� i#
i&1

0

P(N, n� i ) is the cluster size distribution when the mean density of
points is n� i . The reason for this expression is that the sum in (28), within
a cluster containing N points, is equal to | times N.

Following the same procedure that led us to expression (7) we find

P0(V, n� )=exp _&|
n�

0

V dx
1+xg� (x)& (30)

From this expression and using expression (9) and (18) we may obtain
the clusters multiplicity function, P(N, n� ), that may be used to compute
g� (n� ). Now, since this function enters P(N, n� ) through (30), we must solve
for it selfconsistently. If g(u) is of the form

g(u)=u+:u2+;u3+ } } }

we have

g� (x)=|+:f1(x)+;f2(x)+ } } }

where

fj (x)=
(N j+1)

(N )

These averages are computed using P(N, x). That is, they correspond
to the cluster presents when n� =x.
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As an example we will determine f1 , f2 in the case when g(u) contains
up to the cubic term. Then, using expressions (30), (9), (18), we find that
the generating function of P(N, n� ) is given by:

G(P(N, n� ))(t)=1&
(N )
n� V |

n� (1&e t )

0

V dx
1+x(w+:f1(x)+;f2(x))

(31)

We then have

(N )=G$(t=0); (N 2) =G"(t=0)=(N ) f1(n� )
(32)(N 3) =G$$$(t=0)=(N ) f2(n� )

These equations imply that

f1(n� )=1+n� (w+:+;)
(33)

f2(n� )=1+3n� (w+:+;)+2n� 2w(w+:+;)

Substituting these expressions in (31) we may finally obtain the
generating function of P(N, n� ). We then have

P(N, n� )=
d nG(P(N, n� ))

d(et )n } e t=0

=
(N )(&n� )n&1

n!
d nY(n� )

dn� n

(34)

Y(n� )#|
n�

0

dx
1+x(w+:f1(x)+;f2(x))

In the case when ;=0 and w>3: we have explicitly

Y(n� )=
1

- (w+:)(w&3:)

n�

0_ln
2(w+:) :x+w+:&- (w+:)(w&3:)

2(w+:) :x+w+:+- (w+:)(w&3:)&
(35)

Using this in (34) and normalizing to obtain (N ) , we find

P(N, n� )=
1
N \ln

1&g�(g+b)
1&g�(g+a)+

&1

_\ g
g+a+

N

&\ g
g+b+

N

&
g=2 \1+

:
w+

:
w

n� w

(36)

a=1+
:
w

&�(1&3:w) \1+
:
w+

b=1+
:
w

+�(1&3:w) \1+
:
w+

928 Betancort-Rijo



This distribution corresponds to a mixture of avalanches starting at
different times. These avalanches are such that the probability per unit
time, Z(t), for a new point to joint the avalanche is given by

Z(t)=L(t) \n(t)+
:
w

n2(t)+ (37)

where n(t) stands for the number of points present at time t, and L(t) is a
certain function of time that determines how fast the avalanche grows, but
not the size distribution at a given time (characterized by (N ) ).

To obtain the distribution corresponding to an avalanche starting at
time n� (t), P(N�n� (t)), we must solve an equation similar to (23). In the pre-
sent case the right hand side of the equation is given by expression (36);
the time distribution for the father points, P(n� (t)), may be obtained after
the same considerations that led to expression (22)

P(n� (t)) dn� (t)=\|
n�

0

dx
1+wx+:x(1+x(w+:))+

&1

_
dn� (t)

1+n� (t) w+:n� (t)(1+n� (t)(w+:))

#(Y(n� ))&1 dY(n� (t)) (38)

and P(N�n� (t)) can only depend on the variable

u#|
n�

n� (t)

dx
1+xw+:x(1+x(w+:))

=Y(n� )&Y(n� (t))

We may then write the present case equivalent of expression (23) in
the form:

(Y(n� ))&1 |
Y(n� )

0
P1(N�u) du=P(N, n� ) (39)

where P1(N�u) is simply P(N�n� (t)) expressed as a function of u and P(N, n� )
is given by (36). We have used the fact that du=&dY. By deriving this
expression with respect to n� we find

P(N�0)=P1(N�Y(n� ))=P(N, n� )+
Y(n� )
Y$(n� )

d
dn�

P(N, n� ) (40)
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The prime stands for derivative with respect to n� . P(N�0) is the size
probability distribution at time n� of clusters initiated at n� (t)=0. For
clusters initiated at n� (t) we have inmedeatly

P(N�n� (t))#P1(N�u)#P1(N�Y(n� 1))
(41)

u=Y(n� )&Y(n� (t))#Y(n� 1)

This equation defines n� 1 that when placed in the right hand side of
(40) gives the result searched for. However, we do not need this procedure,
since all these avalanches belong to type (37) only that with a different L(t)
and starting time. So the size distribution as a function of (N ), :�w is the
same for all of them and we may obtain it using simply P(N�0).

Expression (40) is valid in general, that is, for any g� (x), with Y(n� )
defined by:

Y(n� )=|
n�

0

dx
1+xg� (x)

(42)

and P(N, n� ) given by (34). However, only when g� (x) is a polinomia can we
find, through arguments similar to those leading to (33), its relationship
with g(u) which is directly related to the definition of the avalanche pro-
cess.

Obtaining the size probability distribution for an avalanche Z(t)=
L(t) f (n� (t)) with f a polinomia is a straightforward exercise leading always
to expressions made up of a finite number of simple analytical functions.
To this end we must use g(u)= f (n� (t)=u), obtain from it g� (u) (which is
somewhat tedious for high order polinomia) use it in (42) to obtain Y(n� ),
which give us P(N, n� ) through (34), and substitute for this two quantities
in (40).

In the case that we are presently considering, substituting (36) in (40)
we find

P(N�0)=2 \1+
:
w+

:
w \1+n� w+

:
w

n� w \1+n� w \1+
:
w+++

__ 1

- (1+:�w)(1&3:�w) \\
g

g+a+
N&1 a

(g+a)2

&\ g
g+b+

N&1 b
(g+b)2+&

2P(N, n� )
(g+a)(g+b)&+P(N, n� ) (43)

This distribution corresponds to a particular avalanche of type (37),
namely, that taking place in the first cluster created by a certain type of
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processes leading to a point distribution with mean density n� . To obtain
the distribution for any avalanche of type (37), where n� have no meaning,
we must express n� w in terms of (N ) . However, since the expression is not
handy it is better to use (43) with n� w as a parameter.

So far, we have not considered the time evolution of the avalanches,
caring only about the shape of the distribution for a given value of (N ).
However, it is easy to obtain, for an avalanche defined by Z(t)=
L(t) f (n(t)), (N ) as a function of time. To this end we only need to
choose the deposition rate, given by n� (t), so that the points are placed
within the first cluster at a rate given by Z(t). Using (38) it may be shown
that one should have

wY(n� (t))=|
t

0
L(t) dt (44)

From this expression we obtain n� (t) that may be used in (40) in the
place of n� to calculate (N )(t).

In the present case we find:

wn� (t)=\1+
:
w+

&1 a
:�w

A&1
1&(a�b) A

(45)

A=exp _�\1+
:
w+\1&

3:
w + |

t

0
L(t) dt&

(N )(t) may be obtained inmedeately by means of (43).

4. CONCLUDING REMARKS

We have seen that the generalized binomial is a limit of distributions
resulting from a very general type of processes. This distribution is made
up of randomly distributed point-like clusters whose multiplicity function
we have obtained. These results have been obtained in the limit of zero
range for the enhancement of probability. When this range is finite, we
have seen (expression 14) that Pn(V ) changes. However, the cluster multi-
plicity function remain unchanged as long as the clusters do not percolate;
that is, as long as no cluster contains more than a father point.

Considering the evolution of any individual cluster through the
deposition process we have realized that they grow like an avalanche of a
certain type. So, the cluster multiplicity function may be expressed as as
superposition of avalanches of the same time starting at different times
following a well defined time pattern. From this fact we have infered that
the size of avalanches starting all at the same type follow an exponential

931Generalized Negative Binomial Distributions



distribution. The avalanches implied in these considerations are linear (the
rate of growth being proportional to size). These type of avalanches is
rather common, thus the distribution mentioned above have considerable
interest.

Furthermore, by considering processes with non-linear enhancement
of the probability density, we have shown how to obtain the probability
distribution for the size of non-linear avalanches, and how the mean size of
the avalanche grows with time. This we have done in the case that f (n(t))
is a polinomia. in general case the procedure described here also applies,
but the relationship between g(u) and g� (x) must be obtained by other
means.

We have only considered sequential avalanches, where points joint to
it one by one. However, it is straightforward to generalize the procedure to
the case when the points may come in clumps, provided that their multi-
plicity function does not depend on n(t).

In the processes we have considered so far, the father points were
uniformly distributed. This restriction, however, may be removed quite
easily. The position of the father points may be the result of a non-uniform
Poissonian process with probability density \(x� )

P0(V )=|
�

0
[(1+wn� )&V�w] (1+$) P($) d$

(46)

$#
M&(M )

(M )
; M#|

V
\(x� ) d 3x�

where M is the integral within a randomly placed volume V of the prob-
ability density for the father points and P($) is its probability distribution.
Pn(V ) may be obtained using expression (2) and the generating function
may be obtained by substituting in P0(V ) n� by n� (1&et). Using this result
we find for the second and third central moments of Pn(V ) in terms of the
moments of the underlying probability density field:

( (n&(n) )2)=Vn� (1+wn� +n� V($2) )
(47)

( (n&(n) )3)=($3)+3(1+wn� )
($2)
n� V

+
1+2(wn� )2+3wn�

(n� V )2

In this case the distribution also contains point-like clusters, but they
are now correlated due to the correlations of the probability density field.

If in expression (46) we change expression (7) (the bracket) by expres-
sion (14) the resulting distribution corresponds to a very large variety of
processes where the underlying probability density is not uniform and the
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enhancement of this density due tho the presence of a point extends to
some finite distance from it.
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